ÜBER VERSCHIEDENE REAKTIONEN DER CO-VERBRÜCKTEN KOMPLEXE $[Mo(CO)_3Bipy]_2$ UND $[Mo(CO)_3Phen]_2$ (Bipy=2,2'-BIPYRIDIN, Phen=1,10-PHENANTHROLIN)

II*. NEUE GEMISCHTE EIN- UND ZWEIKERNIGE TRICARBONYL-KOMPLEXE DES MOLYBDÄNS MIT MEHRZÄHNIGEN N- UND P-LIGANDEN

HELMUT BEHRENS, WOLFGANG TOPF und JOCHEN ELLERMANN Institut für Anorganische Chemie II der Universität Erlangen-Nürnberg (Deutschland) (Eingegangen den 24 April 1973)

SUMMARY

The reaction of the binuclear CO-bridged compounds $[Mo(CO)_3Q]_2$ (Q=Bipy, Phen) with multidentate P-Ligands in benzene leads to the formation of mononuclear mixed ligand complexes $Mo(CO)_3QL$ when the P-Ligand is present in excess. $[Q=Bipy, Phen; L=Ph_2PPPh_2, Ph_2P(CH_2)_nPPh_2 (n=1-3), Ph_2P(CH_2)_2 N(C_2H_5)_2$; the reaction with $L=CH_3C(CH_2PPh_2)_3$ occurs only when Q=Bipy.]

$$Q(OC)_2 Mo \langle C \\ C \\ C \\ Mo(CO)_2 Q + 2L \rightarrow 2 Mo(CO)_3 QL$$
(1)

The reaction of 1/1 stoichiometric quantities results in binuclear complexes $[Mo(CO)_3Q]_2L$ [Q=Bipy, Phen; L=Ph₂P(CH₂)_nPPh₂ (n=1-3); the reaction with L=CH₃C(CH₂PPh₂)₃ occurs only when Q=Bipy].

$$Q(OC)_{2}Mo \langle C \\ C \\ C \\ C \\ Mo(CO)_{2}Q + L \rightarrow Q(OC)_{3}MoLMo(CO)_{3}Q$$
(2)

The structures of the new compounds have been inferred on the basis of IR active v(CO), v(MoC) and $\delta(MoCO)$ vibrations, molecular weight determinations and chemical reactivity.

ZUSAMMENFASSUNG

Die Reaktion (1) der zweikernigen, CO-verbrückten Verbindungen [Mo-* Fur I Mitteilung siehe Ref 9 $(CO)_3Q]_2$ (Q=Bipy, Phen) mit mehrzähnigen P-Liganden in Benzol führt zu einkernigen gemischten Komplexen Mo(CO)_3QL [Q=Bipy, Phen; L=Ph_2PPPh_2, Ph_2P(CH_2)_nPPh_2 (n=1-3), Ph_2P(CH_2)_2N(C_2H_5)_2; mit L=CH_3C(CH_2PPh_2)_3 nur, wenn Q=Bipy] wenn mit einem Überschuss an P-Liganden gearbeitet wird.

$$Q(OC)_2 Mo \stackrel{C}{\underset{C}{\overset{}}} Mo(CO)_2 Q + 2L \rightarrow 2 Mo(CO)_3 QL$$
(1)

Erfolgt die Umsetzung dagegen im Molverhältnis 1/1, so gelangt man zu den zweikernigen gemischten Komplexen $[Mo(CO)_3Q]_2L$ $[Q=Bipy, Phen; L=Ph_2P-(CH_2)_nPPh_2$ (n=1-3); mit $L=CH_3C(CH_2PPh_2)_3$ nur, wenn Q=Bipy] (Gl. 2).

$$Q(OC)_2 Mo \overset{O}{\underset{C}{\overset{}}} Mo(CO)_2 Q + L \rightarrow Q(OC)_3 Mo \ L \ Mo(CO)_3 Q \qquad (2)$$

Die Strukturen der neuen Verbindungen werden an Hand der IR-aktiven v(CO)-, v(MoC)- und $\delta(MoCO)$ -Banden sowie auf Grund von Molgewichtsbestimmungen und Folgereaktionen bestimmt.

EINLEITUNG

In den vergangenen Jahren wurde eine grosse Anzahl einkerniger, gemischtsubstituierter Tricarbonyl-Komplexe des Molybdäns vom Typ $Mo(CO)_3QL$ $(Q=Bipy, Phen; L=einzähniger P-Ligand bzw. N-Ligand)^{1-7}$ dargestellt. Als Ausgangsverbindungen dienten in allen Fällen die Tetracarbonyl-Komplexe Mo- $(CO)_4Bipy$ und $Mo(CO)_4Phen$, die in hochsiedenden Lösungsmitteln (z.B. Xylol^{3,4,7}, 1,2-Dichloräthan^{5,6}) mit den entsprechenden Liganden umgesetzt wurden.

Erst die durch Reaktion von $C_7H_8Mo(CO)_3$ ($C_7H_8=Cycloheptatrien$) mit den zweizähnigen N-Heterocyclen Q (Q=Bipy, Phen) in unpolaren Lösungsmitteln, wie Benzol oder Cyclohexan, unter Eliminierung des C_7H_8 erhaltenen 'zweikernigen, CO-verbrückten Komplexe⁸:

$$\begin{array}{c} O \\ \parallel \\ Q(OC)_2 Mo \stackrel{C}{<} Mo(CO)_2 Q \\ \parallel \\ O \end{array}$$

erlaubten es, unter entschieden milderen Bedingungen gemischte Tricarbonyl-Komplexe des Molybdäns darzustellen⁹.

Diese dimeren Verbindungen (Fig. 1), bei denen auf Grund der Edelgasregel eine Metall-Metall-Doppelbindung neben der CO-Verbrückung diskutiert werden kann (vgl.^{10,11}), erweisen sich als sehr reaktionsfreudig In Gegenwart einzähniger

Fig 1

Liganden erfolgt eine Aufspaltung des Dimeren in fünffach koordinierte Bruchstücke $\langle Mo(CO)_3 Q \rangle$ mit einer freien Koordinationsstelle, an die sich die Liganden anlagern (Gl. 1). Auf diesem Wege konnten die Komplexe Mo(CO)₃QL (Q=Bipy, Phen; L=NH₃, PPh₃, PPhCl₂) erhalten werden⁹.

In polaren Lösungsmitteln, wie CH_3CN oder THF, reicht selbst die Donorwirkung der Lösungsmittelmoleküle zur Spaltung der dimeren Verbindungen aus, wobei die Addukte Mo(CO)₃QL (Q=Bipy, Phen; L=CH₃CN, THF) entstehen⁸

In der vorliegenden Arbeit wird nun das Verhalten der zweikernigen, COverbrückten Komplexe $[Mo(CO)_3Bipy]_2$ und $[Mo(CO)_3Phen]_2$ gegenüber den zweizähnigen P-Liganden 1,1,2,2-Tetraphenyldiphosphin (Ph_2PPPh_2), 1,1-Bis(diphenylphosphin)-methan (Ph_2PCH_2PPh_2), 1,2-Bis(diphenylphosphin)-äthan $[Ph_2P-(CH_2)_2PPh_2]$, 1,3-Bis(diphenylphosphin)-propan $[Ph_2P(CH_2)_3PPh_2]$, sowie dem gemischten P-N-Liganden 1-Diphenylphosphin-2-diäthylamin-äthan $[Ph_2P(CH_2)_2-$ N(C₂H₅)₂] und dem dreizähnigen P-Liganden 1,1,1-Tris(diphenylphosphinmethylen)äthan $[CH_3C(CH_2PPh_2)_3]$ in Abhängigkeit der molaren Verhältnisse untersucht.

I PRÄPARATIVE ERGEBNISSE

(1) Darstellung und Eigenschaften der einkernigen Komplexe $Mo(CO)_3QL$

Bei der Umsetzung von $[Mo(CO)_3Bipy]_2$ und $[Mo(CO)_3Phen]_2$ mit den Liganden L $[L = Ph_2PPPh_2, Ph_2PCH_2PPh_2, Ph_2P(CH_2)_2PPh_2, Ph_2P(CH_2)_3PPh_2, Ph_2P(CH_2)_2N(C_2H_5)_2, CH_3C(CH_2PPh_2)_3]$ im Molverhältnis 1/2 in Benzol erhält man nach Gl. (1) bei Temperaturen zwischen 20° und 80°C die in Tabelle 1 aufge-

$$Q(OC)_2 Mo \overset{O}{\underset{C}{\leftarrow}} Mo(CO)_2 Q + 2L \rightarrow 2 Mo(CO)_3 QL$$
(1)

führten, rot- bis tiefvioletten, diamagnetischen Verbindungen $Mo(CO)_3QL$ in sehr guten Ausbeuten. Reaktionen von $[Mo(CO)_3Phen]_2$ mit dem Liganden $CH_3C(CH_2-PPh_2)_3$ führen auch bei einer Temperatursteigerung auf 90°C und Reaktionszeiten von 14 Tagen zu keiner Umsetzung.

Diese einkernigen gemischten Molybdän-Komplexe entsprechen den erst vor kurzem aus $[N(CH_3)_4][M(CO)_5X](M=Cr, Mo, W; X=Cl, J)$ und den aufgeführten

Liganden dargestellten Verbindungen¹² LM(CO)₅ [M=Cr, Mo, W; L=(CH₃)₂P-(CH₂)₂P(CH₃)₂ und M=Cr; L=Ph₂PCH₂PPh₂, Ph₂P(CH₂)₂PPh₂, Ph₂P(CH₂)₃-PPh₂], wenn man sich zwei CO-Gruppen durch die N-Heterocyclen Bipy bzw. Phen ersetzt denkt.

Von den Komplexen in Tabelle 1 wurde $Mo(CO)_3Phen[Ph_2P(CH_2)_2-N(C_2H_5)_2]$ bereits von anderen Autoren¹³ aus $Mo(CO)_4Phen$ dargestellt. Die IR-Spektren der auf verschiedenen Wegen erhaltenen Verbindungen erweisen sich als identisch.

TABELLE 1

Mo(CO) ₃ BipyL	Mo(CO) ₃ PhenL	
$Mo(CO)_{3}Bipy(Ph_{2}PPPh_{2})$ $Mo(CO)_{3}Bipy(Ph_{2}PCH_{2}PPh_{2})$ $Mo(CO)_{3}Bipy[Ph_{2}P(CH_{2})_{2}PPh_{2}]$ $Mo(CO)_{3}Bipy[Ph_{2}P(CH_{2})_{3}PPh_{2}]$ $\dot{M}o(CO)_{3}Bipy[Ph_{2}P(CH_{2})_{2}N(C_{2}H_{3})_{2}]$ $Mo(CO)_{3}Bipy[CH_{2}C(CH_{2}PPh_{2})_{3}]$	$\begin{array}{l} Mo(CO)_{3}Phen(Ph_{2}PPPh_{2})\\ Mo(CO)_{3}Phen(Ph_{2}PCH_{2}PPh_{2})\\ Mo(CO)_{3}Phen[Ph_{2}P(CH_{2})_{2}PPh_{2}]\\ Mo(CO)_{3}Phen[Ph_{2}P(CH_{2})_{3}PPh_{2}]\\ Mo(CO)_{3}Phen[Ph_{2}P(CH_{2})_{2}N(C_{2}H_{5})_{2}] \end{array}$	

Während sich $Mo(CO)_3Q(Ph_2PPPh_2)$, $Mo(CO)_3Q[Ph_2P(CH_2)_2N(C_2H_5)_2]$ (Q=Bipy, Phen) und $Mo(CO)_3Bipy[CH_3C(CH_2PPh_2)_3]$ gut bis mässig in Benzol lösen, nimmt die Löslichkeit der Komplexe mit Erhöhung der Kettenlänge der aliphatischen CH_2 -Gruppen zwischen den PPh_2-Gruppen sehr schnell ab. So sind $Mo(CO)_3Q(Ph_2PCH_2PPh_2)$ (Q=Bipy, Phen) mässig, $Mo(CO)_3Q(Ph_2P(CH_2)_2-PPh_2]$ und $Mo(CO)_3Q[Ph_2P(CH_2)_3PPh_2]$ (Q=Bipy, Phen) sehr schlecht bzw. unlöslich in Benzol. Sämtliche Komplexe sind in Petroläther unlöslich, lösen sich aber gut bis mässig in CH_2Cl_2 und $CHCl_3$, wobei jedoch insbesondere bei $CHCl_3$ Zersetzung eintritt. Deshalb konnten Molekulargewichtsbestimmungen in $CHCl_3$ nur bei den Verbindungen $Mo(CO)_3QL(Q=Bipy, Phen; L=Ph_2PPPh_2, Ph_2 PCH_2PPh_2)$ durchgeführt werden.

Unter N_2 -Schutzgasatmosphäre sind die Komplexe wochenlang bei Raumtemperatur stabil.

Wegen der mässigen Löslichkeit konnten NMR-Spektren nicht aufgenommen werden. Massenspektrometrische Untersuchungen scheiterten daran, dass sich in allen Fällen die Verbindungen nicht unzersetzt verdampfen lassen und man bestenfalls nur die Fragmentierungen der heterocyclischen Liganden beobachtet.

(2) Reaktionen der einkernigen Komplexe $Mo(CO)_3QL$

Zum Nachweis, dass in den Komplexen $Mo(CO)_3QL$ die genannten P-Liganden einzähnig fungieren, wurde versucht, die nicht koordinierten tertiären Phosphin-Gruppen mit CH₃J bzw. C₂H₅J zu quaternisieren. Lässt man $Mo(CO)_3QL$ (Q=Bipy, Phen; L=Ph₂PPPh₂) mit CH₃J in Benzol reagieren, so erfolgt alsbaldige Zersetzung der Komplexe, wobei der zweizähnige quaternisierte P-Ligand J[Ph₂-(CH₃)PP(CH₃)Ph₂]J freigesetzt wird.

Dagegen gelingt es leicht, die koordinativ ungebundenen P-Atome der beiden Komplexe $Mo(CO)_3Q(Ph_2PCH_2PPh_2)$ (Q=Bipy, Phen) mit CH₃J in Benzol zu quaternisieren. Dabei entstehen die tiefroten, in Benzol und Petroläther unlöslichen Verbindungen { $Mo(CO)_3Bipy[Ph_2PCH_2P(CH_3)Ph_2]$ } J und { $Mo(CO)_3Phen[Ph_2-PCH_2P(CH_3)Ph_2]$ } J, die sich in CH₃CN und CH₂Cl₂ unter langsamer Zersetzung lösen.

Eine Quaternisierung der Komplexe $Mo(CO)_3BipyL$ und $Mo(CO)_3PhenL$ [L=Ph₂P(CH₂)₂PPh₂, Ph₂P(CH₂)₃PPh₂] mit CH₃J gelingt auf Grund ihrer schlechten Löslichkeit in Benzol dagegen nicht.

(3) Darstellung und Eigenschaften der zweikernigen Komplexe $[Mo(CO)_3Q]_2L$

Während man bei den Reaktionen von $[Mo(CO)_3Bipy]_2$ und $[Mo(CO)_3$ -Phen]₂ mit mehrzähnigen P-Liganden im Überschuss die oben beschriebenen einkernigen Verbindungen Mo(CO)₃QL erhält, entstehen die in Tabelle 2 aufgeführten violetten, zweikernigen gemischten Komplexe $[Mo(CO)_3Q]_2L$, wenn man im molaren Verhältnis 1/1 arbeitet (Gl. 2).

$$Q(OC)_2 Mo \langle CO \rangle_2 Q + L \rightarrow [Mo(CO)_3 Q]_2 L$$

$$(2)$$

$$U = O$$

Diese zweikernigen gemischten Molybdän-Komplexe leiten sich von den Diphosphin-verbrückten Dekacarbonyl-Verbindungen der VI. Nebengruppe, nämlich (OC)₅MR₂P(CH₂)_nPR₂M(CO)₅ (M=Cr, Mo, W; R=CH₃, C₂H₅, Ph; $n=0^{14}$ bzw. M=Cr; R=Ph; $n=2^{12}$ bzw. M=Mo; R=Ph; $n=2^{15}$ bzw. M=Mo: R=Ph; $n \ge 4^{16}$) ab, wenn man sich jeweils zwei endständige CO-Gruppen durch die N-Heterocyclen Bipy oder Phen ersetzt denkt.

TABELLE 2

$[Mo(CO)_3B_ipy]_2L$	$[Mo(CO)_3Phen]_2L$	
$[Mo(CO)_{3}Bipy]_{2}(Ph_{2}PCH_{2}PPh_{2})[Mo(CO)_{3}Bipy]_{2}[Ph_{2}P(CH_{2})_{2}PPh_{2}][Mo(CO)_{3}Bipy]_{2}[Ph_{2}P(CH_{2})_{3}PPh_{2}][Mo(CO)_{3}Bipy]_{2}[CH_{3}C(CH_{2}PPh_{2})_{3}]$	$[Mo(CO)_{3}Phen]_{2}(Ph_{2}PCH_{2}PPh_{2})$ $[Mo(CO)_{3}Phen]_{2}[Ph_{2}P(CH_{2})_{2}PPh_{2}]$ $[Mo(CO)_{3}Phen]_{2}[Ph_{2}P(CH_{2})_{3}PPh_{2}]$	

Die beschriebenen zweikernigen Komplexe sind in Benzol und Petroläther unlöslich, in CH_2Cl_2 mässig bis schlecht löslich, wobei sie sich langsam zersetzen.

Lässt man $[Mo(CO)_3Q]_2$ (Q=Bipy, Phen) mit Ph₂PPPh₂ reagieren, so gelingt es auch bei höheren Temperaturen nicht, die verbrückten Verbindungen $[Mo(CO)_3Q]_2(Ph_2PPPh_2)$ zu erhalten.

Vielmehr erfolgt bei molaren Ansätzen immer nur eine 50%-ige Umsetzung zu den einkernigen Komplexen $Mo(CO)_3Q(Ph_2PPPh_2)$, während 50% der Ausgangsverbindung $[Mo(CO)_3Q]_2$ unumgesetzt zurückbleiben.

Versuche, die zweikernigen Verbindungen $[Mo(CO)_3Q]_2(NP)$ [Q=Bipy,Phen; NP=Ph₂P(CH₂)₂N(C₂H₅)₂] mit einer Metall-Phosphor- und einer Metall-Stickstoffbindung darzustellen, scheiterten, da der gemischte P-N-Ligand auch bei molaren Ansätzen nur einzähnig, und zwar über den Phosphor gebunden, fungiert (vgl.¹⁷).

Da der dreizähnige Ligand $CH_3C(CH_2PPh_2)_3$, wie an den Komplexen $Mo(CO)_3Bipy[CH_3C(CH_2PPh_2)_3]$ und $[Mo(CO)_3Bipy]_2[CH_3C(CH_2PPh_2)_3]$ gezeigt werden konnte, nur ein- bzw. zweizähnig wirkt, konnten die Verbindungen $[Mo(CO)_3Q]_3[CH_3C(CH_2PPh_2)_3]$ (Q=Bipy, Phen) nicht zugänglich gemacht werden. Wie bereits erwähnt, was es auch nicht möglich, die ein- bzw. zweikernigen Phen-Komplexe $Mo(CO)_3Phen[CH_3C(CH_2PPh_2)_3]$ und $[Mo(CO)_3Phen]_2$ [CH₃- $C(CH_2PPh_2)_3$] darzustellen. $[Mo(CO)_3Phen]_2[Ph_2P(CH_2)_2PPh_2]$ konnte bereits früher aus $Mo(CO)_4Phen$ und $Ph_2P(CH_2)_2PPh_2$ in siedendem Xylol erhalten werden¹⁸.

(4) Diskussion der IR-Spektren

Die Komplexe Mo(CO)₃QL und $[Mo(CO)_3Q]_2L$ zeigen im Bereich der CO-Valenzschwingungen drei intensive Banden bei ca. 1915, 1815 und 1790 cm⁻¹ (Tabelle 3 und 4). Daraus folgt, dass die in diesen Verbindungen vorliegenden Mo-(CO)₃N₂P-Koordinationspolyeder eine niedrigere Symmetrie als die der Punktgruppe $C_{3v}[2v(CO): A_1 + E]$ besitzen. Weiterhin finden sich in den Spektren der gelösten Komplexe $[Mo(CO)_3Q]_2L$ keinerlei Anzeichen dafür, dass die in den Verbindungen enthalten zwei Koordinationspolyeder bindungs- und massenmässig sowie symmetriebedingt miteinander koppeln. Die beiden in den Komplexen $[Mo(CO)_3Q]_2L$ vorhandenen Koordinationspolyeder verhalten sich also in Lösung wie zwei isolierte Polyeder und geben IR-Absorptionen, wie man sie nur für ein einzelnes Koordinationspolyeder erwarten sollte. Ein derartiger Sachverhalt wurde bereits früher bei spirocyclischen Metallcarbonyl- und Metallnitrosyl-Komplexen beobachtet¹⁹.

Koordinationspolyeder vom Typ Mo(CO)₃N₂P geben grundsätzlich Anlass zu drei isomeren Formen, die alle jeweils drei IR-aktive (CO)-Valenzschwingungen zeigen sollten (Strukturen A, B, C). Von diesen kann die Struktur C (Punktgruppe C_{2v}) ausgeschlossen werden, da die zweizähnigen Liganden Bipy und Phen nur *cis*-Positionen besetzen können. Die verbleibenden Formen besitzen jeweils eine Symmetrie der Punktgruppe C_s und enthalten die drei CO-Gruppen in einer facialen (Struktur A) bzw. meridionalen Anordnung (Struktur B). Diese beiden Isomere lassen sich auf Grund der Methode der oszillierenden Dipole²⁰ unterscheiden. Für das *fac*-

Mo(CO) ₃ BipyL	Zuordnung	Phase ^a		Mo(CO) ₃ PhenL	Zuordnung	Phase	
		KBr	CH ₂ Cl ₂			KBr	CH ₂ Cl ₂
$L = Ph_2 PPPh_2$	v(CO)	1906 st	1918 sst	$L = Ph_2 PPh_2$	v(CO)	1909 st	1922 sst
		1822 st	1821 st			1813 m-st	1825 st
		1785 sst	1797 st			1787 st	1798 st
						1773 m-st	
$Ph_2 PCH_2 PPh_2$	v(CO)	1910 st	1918 sst	$Ph_2 PCH_2 PPh_2$	v(CO)	1907 sst	1918 st
		1804 st	1820 st			1825 st	1821 m-st
		1781 sst	1792 st			1787 sst	1792 m-st
$Ph_2 P(CH_2)_2 PPh_2$	v(CO)	1909 st	1918 m-st	$Ph_2P(CH_2)_2PPh_2$	v(CO)	1910 sst	1909 sst
		1801 sst	1822 m			1816 st	1820 st
		1785 sst	1793 m			1785 sst	1780 st
$Ph_2 P(CH_2)_3 PPh_2$	v(CO)	1908 sst	1917 m-st	Ph ₂ P(CH ₂) ₃ PPh ₂	v(CO)	1901 sst	1917 sst
		1814 st	1819 m	• •		1820(Sch) {	1819 st
		1788 sst	1792 m			1798 sst)	1793 st
						1788 st	
CH ₃ C(CH ₂ PPh ₂) ₃	v(CO)	1910 st	1917 sst				
		1813 m-st	1817 st				
		1788 m (1791 st				
		1772 m (
$Ph_2 P(CH_2)_2 N(C_2 H_5)_2$	v(CO)	1900 sst	1918 st	$Ph_{2}P(CH_{2})_{2}N(C_{2}H_{5})_{2}$	v(CO)	1908 sst	1916 st
		1827 st)	1820 st			1820 st)	1820 m-st
		1813(Sch)	1789 sst			1799(Sch) {	1792 m-st
+		1778 sst		4		1790 sst	
Ph ₂ PCH ₂ P(CH ₃)Ph ₂ J ⁻	v(CO)	1909 sst	1910 m-st ^b	Ph, PCH, P(CH,)Ph, J ⁻	v(CO)	1934 sst)	1910 sst ^c
		1812 st	1830 m ^b	1 ,	~	1900(Sch)	1825 st ^c
	+	1784 sst	1792 m-st ^b			1825 sst	1790 sst ^c
	$v_1(\dot{P}-C_6H_5)$	1110 m				1768 sst	
	v,(P-C,H,)	1095 m			-	1742 (Sch)	
	$\rho(CH_3)$	904 m			۰،(P-C,H,)	1120 m	
		895 m			v, (P-C, H,	1096 m	
					ρ(CH ₁)	905 m	
					ì	895 m	

CO-VERBRÜCKTE MOLYBDÄN KOMPLEXE II

TABELLE 3. CHARAKTERISTISCHE ABSORPTIONEN DER KOMPLEXE Mo(CO)3QL IM KURZWELLIGEN IR-BEREICH

auftretende v(CO)-Banden bei 2019 ss, 1936 s-m, 1880 s-m cm⁻¹ deuten auf Bildung eines Komplexes mit cis-Mo(CO)₄-Gruppierung, 4 Bande moglicherweise unter v(CO) bei 1910 cm⁻¹ ^e in CH₂CN gelost, darin ebenfalls Zerfall, neue v(CO)-Banden bei 2017 s, 1924 st, 1875 m

$[Mo(CO)_3Bipy]_2L$	Phase			$[Mo(CO)_3 Phen]_2 L$	Phase		
	KBr	CH ₁ Cl ₁	CH ₃ CN		KBr	CH ₁ Cl ₁	CH ₃ CN
$L = Ph_2 PCH_2 PPh_2$	1910 sst 1815(Sch))	1916 st	1911 sst	$L = Ph_2 PCH_2 PPh_2$	1912 sst	1918 m	1911 m-st (A ₁) ^a
	1806 st }	1822 m-st 1791 m-st	1815 m-st 1793 sst		1810 Sch }	1820 s-m 1789 s-m	1793 m (F)"
$Ph_2P(CH_2)_2PPh_2$	1772(Sch) { 1908 sst	1915 st		Ph, P(CH,), PPh,	1909 st	1915 m-st	
	1804(Sch) { 1785 st	1817 m-st 1782 m-st			1813 st	1816 m-st	
Ph ₂ P(CH ₂) ₃ PPh ₂	1909 sst	1918 st		Ph ₂ P(CH ₂) ₃ PPh ₂	1/62 St 1915 sst	1/80 m-st 1915 st	
-	1813 st	1818 m-st			1805 sst	1817 m-st	
CH ₃ C(CH ₂ PPh ₂) ₃	1/69 SSI 1910 sst	1/93 m-st 1914 sst			1767 st	1790 m-st	
	1815 Sch)						
	1805 st(Sch) \rangle	1812 st					
	1787 sst)	1786 st					

V(CO)-ABSORPTIONEN DER KOMPLEXE [Mo(CO)3Q]2L IM KURZWELLIGEN IR-BEREICH $(\dot{Q} = \dot{B}ipy$, Phen, L = difunktionell wirkende, mehrzähnige Organophosphine, Absorptionen in cm⁻¹)

TABELLE 4

 CH_3CN , die v(CU)-Banden entsprechen denen von Mo(CU)₃Phen(CH₃CN)⁴ [Pseudo- $C_{3\nu}$ -Symmetrie, 2 v(CO) 3 H 1.6..... 5) $A_1 + E$ Isomere (A) sind drei intensitätsstarke CO-Valenzabsorptionen zu erwarten, während das *mer*-Isomere (B) eine schwache und zwei starke v(CO)-Banden geben sollte Die hier behandelten Komplexe vom Typ Mo(CO)₃QL und [Mo(CO)₃Q]₂L zeigen drei starke CO-Absorptionen Demgemäss enthalten sie *fac*-Mo(CO)₃N₂P-Koordi nationspolyeder der Punktgruppe C_s (Struktur A). Nach der Schwingungsanalyse sind für sie neben den 3 (CO)-Valenzschwingungsbanden (2 A' + A'') im langwelligen IR-Bereich (700–250 cm⁻¹) noch 3 (MoC)-Valenzabsorptionen (2 A' + A'') und 6 (MoCO)-Deformationsschwingungsbanden (3 A' + 3 A'') zu erwarten. Ausserdem sollten in diesem Bereich noch 2 v(MoN)-Banden (A' + A'') auftreten. Die v(MoP)-Bande (A') dürfte unterhalb des spektrometrisch zugänglichen Bereiches (250 cm⁻¹) liegen²¹

(4.1) Absorptionen im kurzwelligen IR-Bereich (4000–700 cm⁻¹). Die Lage der 3 v(CO)-Banden (Tabelle 3 und 4) entspricht vollständig denen, die bei den schon länger bekannten Komplexen $Mo(CO)_3Bipy(PR_3)$ und $Mo(CO)_3Phen(PR_3)$ (R = organischer Rest) beobachtet wurden^{3,4,22}. Eine Zuordnung der 3 Banden zu den Rassen A' und A" ist auf Grund von Raman-Spektren (die Schwingungen der Rasse A' sind im Raman-Effekt polarisiert) nicht möglich, da die Substanzen nur eine für Raman-spektroskopische Untersuchungen unzureichende Löslichkeit besitzen und sich in dem noch am ehesten geeigneten Lösungsmittel CH₂Cl₂ langsam zersetzen (neue v(CO)-Banden nach 30 Minuten IR-spektroskopisch nachweisbar). In CH₃CN ist die Zerfallsgeschwindigkeit der Komplexe $Mo(CO)_3QL$ und $[Mo(CO)_3Q]_2L$ merklich grösser. Lediglich im Festzustand sind sie unzersetzt haltbar. Für Lösungsspektren muss man sich dahingehend behelfen, dass man jeweils nur Teilbereiche registriert So konnen von frisch bereiteten CH2Cl2-Lösungen einwandfreie IR-Spektren im Bereich der v(CO)-Banden erhalten werden. Bezugnehmend auf bereits früher dargelegte theoretische Argumente^{4,22} kann bei den vorliegenden Organophosphin-Komplexen die langwelligste der drei v(CO)-Banden (≈ 1790 cm⁻¹) der Rasse A" zugeordnet werden. Die beiden kürzerwelligeren Banden (≈ 1915 und 1815 cm⁻¹) gehören dann jeweils der Rasse A' an.

Bei den Komplexen Mo(CO)₃BipyL und Mo(CO)₃PhenL [L = Ph₂P(CH₂)₂-N(C₂H₅)₂] wäre grundsätzlich eine P- bzw. N-Koordination von L möglich Die Lage der 3 v(CO)-Banden beweist jedoch eindeutig, dass in diesen Verbindungen das Ph₂P(CH₂)₂N(C₂H₅)₂ über den Phosphor an das Metall koordiniert ist. Im Falle einer N-Koordination sollten nämlich die v(CO)-Banden nicht bei ca. 1915, 1820 und 1790 cm⁻¹ auftreten, sondern bei ca. 1895, 1775 und 1745 cm⁻¹, d.h. um etwa 20 bis 45 Wellenzahlen erniedrigt, erscheinen²³. Da Bipy und Phen einerseits, und die [CH₂N(C₂H₅)₂]-Gruppe andererseits, sich im Donor-Acceptor-Vermögen nur wenig unterscheiden, sollten bei einer N-Koordination von L gegebenenfalls auch die beiden langwelligen Banden zu einer einzigen zusammenfallen⁷ (Pseudosymmetrie C_{3v} bei Komplexen mit Mo(CO)₃N₂N'-Koordinationspolyedern, 2 v(CO): $A_1 + E$). Langwellige Lage und Zusammenfall der Banden wurden jedoch nicht beobachtet.

Für die Komplexe Mo(CO)₃BipyL und Mo(CO)₃PhenL $[L=Ph_2PCH_2P(CH_3)Ph_2 J^-]$ lässt sich das Vorliegen von metallkoordinierten $[P(C_6H_5)_2]$ - und durch Methyljodid quaternisierten $[-P(CH_3) (C_6H_5)_2]$ -Gruppen auch IR-spektros-kopisch sehr gut an Hand der $v_1 (P-C_6H_5)^{24}$ (Tabelle 3) beweisen.

Schliesslich sei noch vermerkt, dass sämtliche Bipy-haltigen Verbindungen eine charakteristische Bande bei 760 cm⁻¹, und sämtliche Phen-haltigen Komplexe

IR-ABSORPTIONEN	DER KOMPLE	XE Mo(CO) ₃ BipyL	IM BEREICH VON	700-300 cm ⁻¹ (Suspen	isionen in Nujol)	
Zuordnung	L					
	Ph2PPh2	Ph ₂ PCH ₂ PPh ₂	Ph ₂ P(CH ₂) ₂ PPh ₂	Ph ₂ P(CH ₂) ₃ PPh ₂	CH ₃ C(CH ₂ PPh ₂) ₃	$Ph_2P(CH_2)_2N(C_2H_5)_2$
P-Lig $\gamma_2(R)$	698 st	693 st	698 m-st	698 ш	697 sst	697 m
$\delta(M_0CO)$	676 m-st	678 m(br)	689 sst	684 st	687 sst	684 s-m
Bipy	655 m-st	655 s-m	655 s-m	654 m	658 m	657 s-m
δ(MoCO)	644 m-st	640 s-m	644 m	645 s-m	648 s	646 s
P-Lig, Bipy, $\delta(R)$	624 m	620 s	623 m	623 s-m	619 s-m	623 s-m
δ(MoCO)	617 m	615 s-m	613 m	615 m	627 m	618 s-m
δ(MoCO)	607 m	608 s-m	m 609	605 s-m	610 s-m	604 s-m
δ(M oCO)	532 st	530 s-m	534 m-st	534 m	544 m-st	535 s-m
δ(MoCO)	525 st		526 st		535 s-m	
y(P-C ₆ H ₅)-Bereich	508 m	518 m	510 st	520 m-st	520 m	520 m
		504 m			515 st	
v(MoC)	494 st	493 s-m	493 m-st	495 s-m	492 m-st	494 s
P-Lig		476 (Sch) }	484 m	486 s	475 s-m	480 s
		471 s-m J		478 s		
۷(MoC)	478 m	457 s	475 s	460 ss	455 s	450 s-m
v ₃ (P-C ₆ H ₅)-Bereich	456 m-st	445 s	455 m-st	447 s-m	446 s-m	
	445 s	438 s		420 s-m	430 s-m	422 s
v(MoC)	419 m-st	410 s-m	421 m-st)	417 s-m	415 m	410 s
			415 m-st 🤇			
P-Lig, Bipy, y ₁ (R)		400 s	405 s	390 s	400 s	
v(PP)	387 m }					
v(MoN)	361 s		360 s	360 s	373 s	367 s
P-Lig. v(MoN)	330 m 323 m	355 m 327 s	340 m	325 s		

Ž -1 (6) IR-ABSORPTIONEN DER KOMPLEXE Mo(CO)-Binul IM BEREICH VON 700-300

TABELLE 5

IR-ABSOR PTIONEN	DER KOMPI	LEXE Mo(CO) ₃ Pł	henL IM BEREICH	VON 700-300 cm ⁻¹	(Suspensionen in Nujol)		
Zuordnung	L						1
	Ph ₂ PPPh ₂	Ph2PCH2PPh2	$Ph_2P(CH_2)_2PPh_2$	$Ph_2P(CH_2)_3PPh_2$	$Ph_2P(CH_2)_2N(C_2H_5)_2$	$Ph_2P(CH_2h_{12}h(CH_3)Ph_2 J^{-}$	
P-Lig , $\gamma_2(R)$	697 st	697 m-st)	698 st	697 st	696 m	694 m	
δ(MoCO)	680 st	681 (Sch) j	689 sst	683 st	684 m	683 m	
δ(MoCO)	648 m-st	647 m	648 m	653 m-st	648 s-m	651 m	
P-Lig, Phen, $\delta(R)$	625 m	621 (Sch) {	621 (Sch) }	621 (Sch))	621 (Sch) (619 s	
δ(MoCO)	618 m	615 m J	618 m-st	616 m-st)	618 s-m J	625 m	
δ(MoCO)	601 s-m	600 s-m	602 m	603 m	606 s	599 s-m	
δ(MoCO)			557 s	557 s	561 s	556 s	
δ(MoCO)	530 st	528 m-st	528 st	528 st	531 s-m	536 m	
y(P-C ₆ H ₅)-Bereich	515 st(br))	516 m-st	517 st	513 m-st	514 s	519 m	
v(MoC)	499 (Sch)	500 m)	501 m)	500 m	503 s	502 m	
		496 m 🤇	494 (Sch) }				
P-Lıg		475 s-m	480 s-m	478 s-m	480 s	480 (Sch)	
v(MoC)	475 (Sch) J	452 s-m	469 s	459 s-m	453 s	477 m (
v ₃ (P-C ₆ H ₅)-Bereach	459 s-m)		453 m	451 s-m		448 s	
	446 (Sch) j	420 m(br)	441 s	436 s	418 s(br)	435 s	
			430 s				
v(MoC)	426 s-m } 417 (Sch) {		418 m-st	416 m		404 m	
P-Lig, Phen; y, (R)		407 s	390 s	400 s			
v(PP)	399 m-st }						
v(MoN)	342 s-m	365 s-m		360 s	360 s	368 s	
P-Lig			342 s(br)	2			
v(MoN)	325 m 317 (Sch)		329 m	318 s		350 s	

TABELLE 6

TABELLE 7

	L			
Zuordnung	Ph ₂ PCH ₂ PPh ₂	$Ph_2P(CH_2)_2PPh_2$	$Ph_2P(CH_2)_3PPh_3$	$CH_3C(CH_2PPh_2)_3$
P-Lig, $\gamma_2(\mathbf{R})$	695 st	698 sst	698 m-st	697 m
δ (MoCO)	680 sst(br)	685 sst	685 sst	680 m
Віру	655 s-m	655 m	654 m-st	655 s-m
δ (MoCO)	642 s-m	644 m	644 m	645 s
P-Lig, Bipy, $\delta(\mathbf{R})$	622(Sch) }	621 m	622 m	
δ (MoCO)	618 m ∫	618 m	615 m	620 s(br)
δ (MoCO)	608 m	611 m	605 m	
δ(MoCO)	589 m		555 ss	
δ (MoCO)	532 m-st	528 m-st	533 m-st	535 m
γ (P-C ₆ H ₅)-Bereich	520 st(Sch) (517 sst	519 st	520(Sch) }
	513 st			515(Sch)
v(MoC)	500 st		496 m	508 s-m
	491 st	493 m		495 s
P-L1g	473 s-m	480(Sch)	486 m	485 s
		,	476 s-m	475 s
v(MoC)	459 m	456 m	460 s	
$v_3(P-C_6H_5)$ -Bereich	444 s-m	446 m	450 m-st	455 s
	421 m	438 s		425 s-m
		424(Sch)		
v(MoC)		416 m ∫	418 m)	419 s-m
P-Lig, Bipy, $\gamma_1(\mathbf{R})$	403 m	400 ss	415 m ∫	
	387 m	391 s-m		
v(MoN)	360 s		362 s	365 s
P-Lig		345 s-m		
י'(MoN)	331 s 310 st	337 s	325 s-m	

IR-ABSORPTIONEN DER KOMPLEXE $[Mo(CO)_3Bipy]_2L$ IM BEREICH VON 700–300 cm⁻¹ (Suspensionen in Nujol)

eine solche bei 840 cm⁻¹ aufweisen. Während erstere einer γ (CH)-Schwingung der heterocyclischen Ringe entspricht, ist letzere einer γ (CH) des carbocyclischen Ringes im 1,10-Phenanthrolin zuzuordnen⁸.

(4.2) Absorptionen im langwelligen IR-Bereich (700–300 cm⁻¹). Metallcarbonyl-Komplexe mit verschiedenartigen Liganden wurden im Bereich der (MCO)-Deformations- und (MC)-Valenzschwingungsbanden bisher nur wenig untersucht²⁵. Verbindungen mit den Liganden Bipy und Phen eignen sich für derartige Untersuchungen noch relativ gut, da sie zwischen 700 und 300 cm⁻¹ nur einige intensitätsschwache Banden aufweisen (Bipy: 657 s, 621 s-m, 400 s-m; Phen: 620 s, 407 s). Enthalten die Komplexe jedoch phenylgruppenhaltige Organophosphine, so werden solche Untersuchungen erheblich erschwert. Diese Liganden geben nämlich im Bereich von 520–390 cm⁻¹ zahlreiche Absorptionen, die vorwiegend den γ (P-C₆H₅)und ν_3 (P-C₆H₅)-Schwingungen²⁶ zuzuordnen sind. Die langwelligen IR-Absorptionen der Verbindungen Mo(CO)₃BipyL, Mo(CO)₃PhenL, [Mo(CO)₃Bipy]₂L und [Mo(CO)₃Phen]₂L (L=mehrzähnige P-Liganden) sind mit den möglichen Zu-

TABELLE 8

	L		
Zuordnung	$Ph_2PCH_2PPh_2$	$Ph_2P(CH_2)_2PPh_2$	$Ph_2P(CH_2)_3PPh_2$
P-Lig $\gamma_2(\mathbf{R})$	698 m	699 st	695 m-st
δ (MoCO)	684 m	688 sst	680 st
δ(ΜοCO)	649 m	646 m-st	643 m
P-Lig, Phen, $\delta(\mathbf{R})$		620 (Sch)	623 (Sch)
δ(MoCO)	615 m(br) }	615 st	612 m
δ (MoCO)	600 (Sch)	601 m	602 m
δ(ΜοCO)		556 s-m	556 s-m
δ(ΜοCO)	528 m-st	526 st	530 st
y(P-C,H,)-Bereich	505 m(Sch)	514 st	521(Sch)
			510 st
v(MoC)	495 m-st	501 m-st	496 m
`		494 m-st	
P-L1g	480 s-m(Sch)	480 m	478 s
v(MoC)	· · · ·	468 s	468 s
v ₃ (P-C ₆ H ₅)-Bereich	460 s(br)	452 m	457 s-m
	445 ss	446 s	446 s
		433 s	432 s
			420 s
v(MoC)		416 m-st	414 s-m
$P-Lig$, Phen, $\gamma_1(\mathbf{R})$	405 s	402 s	400 s
U / (11())		391 s	-
v(MoN)			360 s
v(MoN)	321 s-m	326 m-st	305 s-m

IR-ABSORPTIONEN DER KOMPLEXE [Mo(CO)₃Phen]₂L IM BEREICH VON 700-300 cm⁻¹ (suspensionen in nujol)

ordnungen in den Tabellen 5-8 zusammengestellt. Neben den Ligandenabsorptionen treten im Bereich von 700-500 cm⁻¹ bei den oben genannten Komplexen im wesentlichen 6 neue Banden auf, die den δ (MoCO)-Deformationsschwingungen (3A' + 3A'') zugeordnet werden können. Wegen Kopplungen mit den frequenznahen v(MoC)-Valenzschwingungen gleicher Rasse können sie natürlich nicht als reine Deformationsschwingungen angesprochen werden. Gleiches gilt umgekehrt auch für die v(MoC). Bei der Bande um 680 cm⁻¹ ist die Zuordnung zu einer $\delta(MoCO)$ nicht sicher, da in unmittelbarer Nähe eine Ringdeformationsschwingung der Phenylringe $(\gamma_2(\mathbf{R}))$ auftritt, und eine Aufspaltung derselben nicht gänzlich ausgeschlossen werden kann. Für die Komplexe cis-MO(CO)₃(PPh₃)₃²¹ und cis-(π -Mesityl)- $Mo(CO)_{3}^{25}$ (Punktgruppe C_{3v}) werden entsprechend der Theorie 3 $\delta(MoCO)$ $[A_1 + 2E]$ bei ca. 620, 590 und 530 cm⁻¹ beobachtet. Die Verbindungen Mo(CO)₃ QL und $[Mo(CO)_3Q]_2L$ sollten entsprechend der C_s-Symmetrie ihrer Koordinationspolyeder in diesen Bereichen 5 δ (MoCO)-Banden (3A' + 2A'' gemäss den Übergängen : $A_1 \rightarrow A', E \rightarrow A' + A''$ zu beobachten sein. Ausserdem sollte ein weitere δ (MoCO)-Bande der Rasse A" auftreten, die der IR-inaktiven δ (MoCO) der Rasse A₂ in der Punktgruppe C_{3n} entsprechen würde. Letztere wird der Bande bei 680 cm⁻¹, mit den oben dargelegten Einschränkungen, zugeordnet.

Im Bereich von 520-390 cm⁻¹ treten neben den Ligandenbanden im allge-

meinen 3 neue Banden auf, und zwar bei ca. 495, 460 und 415 cm⁻¹ Sie werden versuchsweise den v(MoC)-Valenzschwingungen zugeordnet. Eine eindeutige Zuordnung kann für die v(MoC)-Banden nicht getroffen werden, da die zwischen 520 und 390 cm⁻¹ auftretenden Ligandenbanden $[\gamma(P-C_6H_5)]$ und $v_3(P-C_6H_5)]$ bei der Koordination der P-Liganden an Metalle vielfach aufspalten und um einige Wellenzahlen zu höheren Werten verschoben werden²⁷. Unsicher ist insbesondere die Zuordnung für die Bande bei 415 cm⁻¹ zu einer v(MoC), da die P-Liganden, Bipy und Phen alle eine Ringdeformationsschwingung der aromatischen Systeme ($\gamma_1(R)$) mit schwacher bis mittlerer Intensität bei ca. 400 cm⁻¹ aufweisen, diese jedoch in den Komplexen an gleicher Stelle mit ähnlicher Intensität nicht mehr beobachtet wird. Sie tritt möglicherweise nach 415 cm⁻¹ verschoben auf.

Eine aufgespaltene Bande mittlerer bis starker Intensität bei 390 cm⁻¹, die jeweils nur in den Spektren der Verbindungen Mo(CO)₃Bipy(Ph₂PPPh₂) und Mo(CO)₃ Phen(Ph₂PPPh₂) beobachtet wird, ordnen wir der (PP)-Valenzschwingung des koordinierten Tetraphenyldiphosphins zu. Die Zuordnung erscheint plausibel, da für Tetraäthyldiphosphin und Tetrabutyldiphosphin die v(PP) bei 424 bzw. 419 cm⁻¹ gefunden wurden²⁸. Die tiefere Lage der v(PP-)-Bande des Tetraphenyldiphosphins folgt aus der vergleichsweise grösseren Masse der Phenylgruppen, ihre relativ grosse Intensität dürfte in der einseitigen Koordination des Ph₂PPPh₂ an das Metall begründet sein.

TABELLE 9

Darstellung von	Einwaagen [.] °[Mo(CO) ₃ Q] ₂ ^b Ligand (g/mmol)	Benzol (ml)	Reaktionsbedingungen (°C/Stdn)
Mo(CO) ₃ B1py(Ph ₂ PPPh ₂)	°0 212/0.310	20	20/12
	^b 0.296/0 80		
$Mo(CO)_3Bipy(Ph_2PCH_2PPh_2)$	°0 150/0 223	30	50/12
	°0 270/0 70		
$Mo(CO)_{3}Bipy[Ph_{2}P(CH_{2})_{2}PPh_{2}]$	°0 106/0 157	30	50/12
	^b 0 200/0 50		
$Mo(CO)_{3}Bipy[Ph_{2}P(CH_{2})_{3}PPh_{2}]$	°0 172/0 256	25	60/48
	^b 0 329/0.80		
$Mo(CO)_{3}B_{1}py[Ph_{2}P(CH_{2})_{2}N(C_{2}H_{5})_{2}]$	°0.104/0.155	10	60/96
	°0.132/0 465		
Mo(CO) ₃ Bipy[CH ₃ C(CH ₂ PPh ₂) ₃]	^a 0.125/0 186	25	40/18
	⁶ 0.375/0 60		
Mo(CO) ₃ Phen(Ph ₂ PPPh ₂)	°0 137/0 190	15	80/84
	^b 0 222/0.60		
Mo(CO) ₃ Phen(Ph ₂ PCH ₂ PPh ₂)	°0 162/0 225	25	60/36
	°0 270/0 70		
$Mo(CO)_{3}Phen[Ph_{2}P(CH_{2})_{2}PPh_{2}]$	⁰0 128/0 177	30	50/36
	^b 0 200/0 50		
$Mo(CO)_{3}Phen[Ph_{2}P(CH_{2})_{3}PPh_{2}]$	°0 120/0 166	30	80/120
	^b 0 206/0 50		
$Mo(CO)_{3}Phen[Ph_{2}P(CH_{2})_{2}N(C_{3}H_{3})_{3}]$	°0 212/0 294	20	60/20
	°0 342/1 20		

VERSUCHSBEDINGUNGEN FÜR DIE DARSTELLUNG DER KOMPLEXE Mo(CO)₃QL $(Q = B_{1}p_{3}, Phen, L \approx mehrzähniger P-Ligand)$

Verbindungen	Analysen	gef (ber)				Mol-Gew	Ausbeuten	Farbe
	J	Н	Мо	N	ď	osmom in CHCl ₃ (ber.)	(0)	
Mo(CO),Bipy(Ph, PPPh,)	62 84	4 08	13 96	4 02	831	665	61.2	violett
	(62 90)	(3 99)	(13 58)	(3.96)	(8 77)	(706 53)		
Mo(CO) ₃ Bipy(Ph ₂ PCH ₂ PPh ₂)	63 67	4 64	12.87	3 74	8 21	656	673	tiefviolett
	(63 34)	(4 20)	(13 31)	(3 89)	(8 60)	(720 56)	89.7	tiefviolett
Mo(CO) ₃ Bipy[Ph ₂ P(CH ₂) ₂ PPh ₂]	63 46	4 33		4 04	. 1			
	(63 77)	(4 39)	(13 06)	(3 81)	(8 43)	(734 58)		
Mo(CO) ₃ Bipy[Ph ₂ P(CH ₂) ₃ PPh ₂]	64 22	441	.	415	-		943	tiefviolett
	(64 18)	(4 58)	(12 82)	(3 74)	(8 27)	(748,61)		
Mo(CO) ₃ Bipy[Ph ₂ P(CH ₂) ₂ N(C ₂ H ₅) ₂]	59 92	5 09	15.81	6 60	5 40		72 1	rotviolett
	(16 65)	(519)	(1544)	(6 76)	(4 98)	(621 53)		
Mo(CO) ₃ Bipy[CH ₃ C(CH ₂ PPh ₂) ₃]	67 76	5 08		281			747	rotviolett
	(67 50)	(4 93)	(86 6)	(2 91)	(6 67)	(960 84)		
$Mo(CO)_3$ Phen (Ph ₂ PPPh ₂)	63 60	4 25	13 61	441	8 72	684	710	violett
	(64 12)	(3 86)	(13 13)	(3 83)	(8.48)	(730 55)		
Mo(CO) ₃ Phen(Ph ₂ PCH ₂ PPh ₂)	63 72	4 25	12 51	3 71	8 74	712	518	trefviolett
	(64 52)	(4 06)	(12 89)	(3 76)	(8 32)	(744 58)		
Mo(CO) ₃ Phen[Ph ₂ P(CH ₂) ₂ PPh ₂]	64 85	3 94		4 36			91.5	trefvrolett
	(64 91)	(4 25)	(12 65)	(3 69)	(8 17)	(758 61)		
Mo(CO) ₃ Phen[Ph ₂ P(CH ₂) ₃ PPh ₂]	65 34	4 47		4 42			893	tiefviolett
1	(65 29)	(4 44)	(12 42)	(3 63)	(8 02)	(772 63)		
$Mo(CO)_3 Phen[Ph_2 P(CH_2)_2 N(C_2H_5)_2]$	61.27	5 06	14 39	6 23	4 40		65 2	rotviolett
1.	(61.40)	(2 00)	(1486)	(6 51)	(4.80)	(645 55)		

ANALYSEN, MOLEKULARGEWICHTE, AUSBEUTEN UND FARBEN DER KOMPLEXE Mo(CO),9QL

TABELLE 10

CO-VERBRÜCKTE MOLYBDÄN KOMPLEXE II

Schliesslich zeigen sämtliche Komplexe eine oder zwei Banden schwacher bis mittlerer Intensität bei etwa 360 und 330 cm⁻¹. Wir ordnen sie versuchsweise den ν (MoN)-Valenzschwingungen zu. Da die N-Liganden Bipy und Phen gegenüber CO ein schwächeres π -Acceptorvermögen besitzen, ist zu erwarten, dass die (MoN)-Bindungen einen niedrigeren Bindungsgrad als die (MoC)-Bindungen aufweisen Demgemäss sollten die ν (MoN)-Banden unterhalb der ν (MoC)-Absorptionen auftreten.

III. BESCHREIBUNG DER VERSUCHE

Bei allen Reaktionen ist der völlige Ausschluss von Luftsauerstoff und -feuchtigkeit unerlässliche Voraussetzung; die verwendeten Losungsmittel waren vollständig wasserfrei und N₂-gesättigt. Die Umsetzungen selbst wurden in dickwandigen Einschlussrohren von ca. 50 cm³ Inhalt durchgeführt. Die Aufnahme der IR-Spektren erfolgte mit einem Beckman IR-7 Spektralphotometer mit CsJ-Austauschoptik. Bei Festkörperspektren wurden die Substanzen oberhalb 700 cm⁻¹ fest in KBr und unterhalb 700 cm⁻¹ fest in Nujol vermessen. Die Molekulargewichte wurden osmometrisch mit einem Mechrolab 301A (Hewlett–Packard) bestimmt.

(1) Darstellung der einkernigen Komplexe $Mo(CO)_3QL$ [Q=Bipy, Phen; $L=Ph_2P-PPh_2$, $Ph_2PCH_2PPh_2$, $Ph_2P(CH_2)_2PPh_2$, $Ph_2P(CH_2)_3PPh_2$, $Ph_2P(CH_2)_2N(C_2H_5)_2$; mit $L=CH_3C(CH_2PPh_2)_3$ nur, wenn Q=Bipy]

Die Versuchsbedingungen für die Reaktionen von $[Mo(CO)_3Q]_2$ mit den mehrzähnigen P-Liganden im Molverhältnis 1/2 sind in Tabelle 9, Analysen, Mole-kulargewichte, Ausbeuten und Farben der erhaltenen einkernigen Komplexe $Mo(CO)_3QL$ in Tabelle 10 zusammengestellt.

TABELLE 11

Darstellung von	Einwaagen: ^a [Mo(CO) ₃ Q] ₂ ^b Ligand (g/mMol)	Benzol (ml)	Reaktionsbedingungen (°C/Stdn)
[Mo(CO) ₃ Bipy] ₂ (Ph ₂ PCH ₂ PPh ₂)	ª0 186/0 277	25	60/14
	^b 0 106/0 277		
$[Mo(CO)_3Bipy]_2[Ph_2P(CH_2)_2PPh_2]$	°0 224/0 330	30	50/12
	^b 0.131/0 330		
[Mo(CO) ₃ Bipy] ₂ [Ph ₂ P(CH ₂) ₃ PPh ₂]	°0.105/0156	20	60/72
	^b 0.064/0 156		·
[Mo(CO) ₃ Bipy] ₂ [CH ₃ C(CH ₂ PPh ₂) ₃]	°0 105/0 156	25	50/12
	⁶ 0 097/0 156		,
[Mo(CO) ₃ Phen] ₂ (Ph ₂ PCH ₂ PPh ₂)	40 180/0 250	30	60/12
	^b 0 096/0 250		,
$[Mo(CO)_3Phen]_2[Ph_2P(CH_2)_2PPh_2]$	°0.324/0.450	30	50/72
	^b 0 179/0 450		,
$[Mo(CO)_{3}Phen]_{7}[Ph_{2}P(CH_{2})_{3}PPh_{7}]$	°0 171/0 238	20	60/120
	°0 098/0 238		·

VERSUCHSBEDINGUNGEN FÜR DIE DARSTELLUNG DER KOMPLEXE $[Mo(CO)_3Q]_2L$ (Q=Bipy, Phen, L=mehrzahniger P-Ligand)

吕
щ
Н
Ξ
AB
Ĥ

ANALYSEN, MOLEKULARGEWICHTE, AUSBEUTEN UND FARBEN DER KOMPLEXE [Mo(CO),O],L (Q=Bipy, Phen; L=mehrzähniger P-Ligand)

	0	(
Verbindungen	Analysen	gef. (ber)				Mol-Gew	Ausbeuten	Farbe
	ບ ບ	Н	Mo	N	Р	Jan Jan	(0/)	
[Mo(CO),Bipy],(Ph,PCH,PPh,)	58 30	3.94	18 47	4.95	5 53	1056.71	943	tiefviolett
	(57 97)	(3 62)	(18.16)	(2 30)	(5.86)			
[Mo(CO),Bipy],[Ph,P(CH,),PPh,]	58 11	414	18 49	5 4 (531	1070 74	<i>L L6</i>	tiefviolett
	(58 33)	(3 76)	(17.92)	(5 23)	(5 79)			
[Mo(CO),Bipy], [Ph, P(CH,), PPh,]	59 08	3 37	, ,	5 04	,	1084 77	947	tiefviolett
	(58 68)	(3 90)	(17 67)	(5 16)	(5 71)			
[Mo(CO),Bipy],[CH,C(CH,PPh,),]	62 79	4 22	14.22	419	7 62	1297 00	96.8	rotviolett
	(62 05)	(4 27)	(1479)	(4.32)	(116)			
[Mo(CO), Phen], (Ph, PCH, PPh,)	59 53	3 82	` ,	514		1104 76	876	tiefviolett
	(59 79)	(3 47)	(17 37)	(5 07)	(5.61)			
[Mo(CO) ₃ Phen],[Ph,P(CH,),PPh,]	60 25	3 86	17 32	4 98	5 10	1118 79	96 7	thefviolett
	(60 12)	(3 60)	(17 15)	(2:01)	(5 54)			
[Mo(CO), Phen]2[Ph2P(CH2), PPh2]	60 38	4.31	17.42	474	5 81	1132.81	968	tiefviolett
	(60 47)	(3 74)	(1694)	(4 95)	(5 47)			

CO-VERBRÜCKTE MOLYBDÄN KOMPLEXE II

Um eine quantitative Umsetzung zu gewährleisten, empfiehlt es sich, die P-Liganden im Überschuss einzusetzen (Molverhältnis $\approx 1/3$).

- Zur Reindarstellung der Verbindungen wird im einzelnen, wie folgt, verfahren : 1. $Mo(CO)_3Q(Ph_2PPPh_2)$ und $Mo(CO)_3Q[Ph_2P(CH_2)_2N(C_2H_5)_2]$ (Q=Bipy, Phen) werden mit wenig kaltem Benzol und Petroläther gewaschen und anschliessend aus Benzol/Petroläther umkristallisiert.
- 2. $Mo(CO)_3Q(Ph_2PCH_2PPh_2)$ (Q=Bipy, Phen) und $Mo(CO)_3Bipy[CH_3C(CH_2-PPh_2)_3]$ werden mit Benzol und Petroläther gewaschen.
- Mo(CO)₃Q[Ph₂P(CH₂)₂PPh₂] und Mo(CO)₃Q(Ph₂P(CH₂)₃PPh₂] (Q=Bipy, Phen) können infolge ihrer Unlöslichkeit nicht umkristallisiert werden; diese Komplexe werden mit heissem Benzol und Petroläther gewaschen.

(2) Darstellung der zweikernigen Komplexe $[Mo(CO)_3Q]_2L[Q = Bipy, Phen; L = Ph_2P-CH_2PPh_2, Ph_2P(CH_2)_2PPh_2, Ph_2P(CH_2)_3PPh_2; mit L = CH_3C(CH_2PPh_2)_3 nur, wenn Q = Bipy]$

Die Versuchsbedingungen der Reaktionen von $[Mo(CO)_3Q]_2$ mit den mehrzähnigen P-Liganden im Molverhältnis 1/1 sind in Tabelle 11, Analysen, Molekulargewichte, Ausbeuten und Farben der erhaltenen Komplexe $[Mo(CO)_3Q]_2L$ in Tabelle 12 aufgeführt.

Die Reinigung der Verbindungen erfolgt wie unter (1),3 beschrieben.

(3) Umsetzungen von $Mo(CO)_3Bipy(Ph_2PCH_2PPh_2)$ und $Mo(CO)_3Phen(Ph_2PCH_2-PPh_2)$ mit CH_3J

Versuchsbedingungen. Einwaage $Mo(CO)_3Q(Ph_2PCH_2PPh_2)$: für Q=Bipy 0.080 g (0 111 mMol); für Q=Phen 0.126 g (0.169 mMol). Einwaage CH₃J: für Q=Bipy 3 ml=6.78 g (4 78 mMol); für Q=Phen 4 ml=9.04 g (6.37 mMol). Lösungsmittel: 50 ml Benzol. Reaktionszeit: für Q=Bipy 4 Stdn.; für Q=Phen 3 Stdn.. Reaktionstemperatur: fur Q=Bipy 40°C; für Q=Phen 50°C.

Nach Beendigung der Reaktion lässt man langsam abkühlen, wobei die beiden Salze $\{Mo(CO)_3Q[Ph_2PCH_2P(CH_3)Ph_2]\}J$ (Q=Bipy, Phen) auskristallisieren. Zur Reinigung wird mit Benzol und Petroläther gewaschen. Analysen, Molekulargewichte und Ausbeuten sind in Tabelle 13 angegeben.

TABELLE 13

 $\{Mo(CO)_{3}Phen[Ph_{2}PCH_{2}P(CH_{3})Ph'_{2}]\}J$

$\left[\mathbf{Q} = \mathbf{B} \mathbf{P} \mathbf{y}, \mathbf{P} \mathbf{H} \mathbf{e} \mathbf{n}, \mathbf{L} = \mathbf{P} \mathbf{n}_2 \mathbf{P} \cdot \mathbf{C} \mathbf{H}_2 \cdot \mathbf{P} \left(\mathbf{C} \mathbf{H}_3 \right) \mathbf{P} \mathbf{n}_2, \mathbf{J} \right]$								
Verbindungen	Analysen gef (ber)				Mol -Gew ber	Ausbeuten		
	С	H	Ν	J		(70)		
{Mo(CO) ₃ B1py[Ph ₂ PCH ₂ P(CH ₃)Ph ₂]}J	54 73 (54 31)	4 09 (3 86)	3 62 (3 25)	14 49 (14 71)	862 50	44.9		

415

(375)

3 74

(3 16)

14 69

(1431)

886 52

488

ANALYSEN, MOLEKULARGEWICHTE UND AUSBEUTEN DER KOMPLEXE Mo(CO)₃QL $[Q = Bipy, Phen, L = Ph_2P-CH_2-P^+(CH_3)Ph_2, J^-]$

55 13

(5555)

DANK

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie e.V., Fonds der Chemie, sind wir für die grosszügige Unterstützung unserer Arbeiten zu grossem Dank verpflichtet.

LITERATUR

- 1 M H B Stiddard, J Chem Soc, (1963) 757
- 2 H Behrens und N Harder, Chem Ber, 97 (1964) 426
- 3 L W Houk und G R Dobson, J Chem Soc, (1966) 317
- 4 L W Houk und G R Dobson, Inorg Chem, 5 (1966) 2119
- 5 J R Graham und R J Angelici, J Amer Chem Soc, 87 (1965) 5590
- 6 J R Graham und R J Angelici, Inorg Chem, 6 (1967) 992
- 7 S C Tripathi und S C Srivastava, J Organometal Chem., 25 (1970) 193
- 8 H. Behrens, E Lindner und G Lehnert, J Organometal Chem, 22 (1970) 439
- 9 H Behrens, G Lehnert und H Sauerborn, Z Anorg Allg Chem, 374 (1970) 310
- 10 R B King und M B Bisnette, J Organometal Chem, 8 (1967) 287
- 11 R B King und A Efraty, J Amer Chem Soc, 93 (1971) 4950
- 12 J A Connor, J P Day, E M Jones und G K McEwen, J Chem Soc, Dalton, (1973) 347
- 13 G R Dobson, R C Taylor und T D Walsh, Inorg Chem, 6 (1967) 1929
- 14 R G Hayter, Inorg Chem, 2 (1963) 1031
- 15 H Werner, R Prinz, E Bundschuh und K Deckelmann, Angew Chem, Int Ed. Engl, 5 (1966) 606
- 16 W H Dietsche, Tetrahedron Lett, (1966) 6187
- 17 H Behrens und H D Feilner, Unveroffentlichte Ergebnisse
- 18 E P Ross und G R Dobson, J Inorg Nucl Chem, 30 (1968) 2363
- 19 J Ellermann und K Dorn, Chem Ber, 101 (1968) 643
- 20 L E Orgel, Inorg Chem, 1 (1962) 25
- 21 A A Chalmers, J Lewis und R Whyman, J Chem Soc, A, (1967) 1817
- 22 J Dalton, I Paul, J G Smith und F G A Stone, J Chem Soc, A, (1968) 1208
- 23 H Behrens, W Topf und J Ellermann, J Organometal Chem, 63 (1973) 369
- 24 J Ellermann, H Behrens, H Dobrzanski und F Poersch, Z Anorg Allg Chem, 361 (1968) 306
- 25 D M Adams, Metal-Ligand and Related Vibrations, Edward Arnold, London, 1967, S 128
- 26 J Goubeau und G Wenzel, Z Phys Chem, 45 (1965) 31
- 27 G B Deacon und J H S Green, Chem Ind (London), (1965) 1031
- 28 E Steger und K Stopperka, Chem Ber, 94 (1961) 3029